
Linaro Dashboard Bundle
Documentation

Release 1.7

Zygmunt Krynicki

October 21, 2011

CONTENTS

1 Installation 3
1.1 Prerequisites . 3
1.2 Installation Options . 3

2 Glossary 5

3 Dashboard Bundle Schema 7
3.1 Schema Description (1.3) . 7
3.2 Raw Schema (1.3) . 9
3.3 Example Bundles . 14

4 Usage 17
4.1 Loading a document . 17
4.2 Saving a document . 17
4.3 Checking document for errors . 18
4.4 Converting older documents to current format . 18

5 Code Documentation 19
5.1 Document Manipulation APIs . 19

6 Version History 21
6.1 Version 1.7 . 21
6.2 Version 1.6 . 21
6.3 Version 1.5 . 21
6.4 Version 1.4 . 21
6.5 Version 1.3 . 22
6.6 Version 1.2 . 22
6.7 Version 1.1.1 . 22
6.8 Version 1.1 . 22
6.9 Version 1.0 . 22

7 Indices and tables 23

Python Module Index 25

i

ii

Linaro Dashboard Bundle Documentation, Release 1.7

See Also:

To see 1.3 format documentation see Raw Schema (1.3)

CONTENTS 1

Linaro Dashboard Bundle Documentation, Release 1.7

2 CONTENTS

CHAPTER

ONE

INSTALLATION

1.1 Prerequisites

This package has the following prerequisites:

• linaro-json

• simplejson

• versiontools

To run the test suite you will also need:

• testtools

• testscenarios

To build the documentation from source you will also need:

• sphinx

1.2 Installation Options

There are several installation options available:

1.2.1 Using Ubuntu PPAs

For Ubuntu 10.04 onward there is a PPA (personal package archive):

• ppa:linaro-validation/ppa

This PPA has only stable releases. To add it to an Ubuntu system use the add-apt-repository command:

sudo add-apt-repository ppa:linaro-validation/ppa

After you add the PPA you need to update your package cache:

sudo apt-get update

Finally you can install the package, it is called python-linaro-dashboard-bundle:

sudo apt-get install python-linaro-dashboard-bundle

3

Linaro Dashboard Bundle Documentation, Release 1.7

1.2.2 Using Python Package Index

This package is being actively maintained and published in the Python Package Index. You can install it if you have
pip tool using just one line:

pip install linaro-dashboard-bundle

1.2.3 Using source tarball

To install from source you must first obtain a source tarball from either pypi project page or from Launchpad project
page. To install the package unpack the tarball and run:

python setup.py install

You can pass –user if you prefer to do a local (non system-wide) installation.

Note: To install from source you will need distutils (replacement of setuptools) They are typically installed on any
Linux system with python but on Windows you may need to install that separately.

4 Chapter 1. Installation

http://pypi.python.org
http://pip.openplans.org/
http://pypi.python.org/pypi/linaro-dashboard-bundle
http://launchpad.net/linaro-python-dashboard-bundle
http://launchpad.net/linaro-python-dashboard-bundle

CHAPTER

TWO

GLOSSARY

LAVA uses various terminology that is sometimes confusing as many of the words are commonly used and have many
meanings. This glossary should help to understand the rest of the documentation better.

Test A test is a piece of code that can be invoked to check something. LAVA assumes that each test has a unique
identifier. A test is also a container of test cases.

Test Case A test case is a sub-structure of a Test. Typically individual test cases are separate functions or classes
compiled into one test executable. Test cases have identifiers, similar to each test, however the test case identifier
needs to be unique only among the test it is a part of.

Test Run A test run is an act of running a test on some hardware in some software (typically operating system kernel,
set of installed and configured packages).

Bundle, results bundle A document format that can describe test results. The document is defined as a JSON docu-
ment matching any of the version of the bundle schema Schema Description (1.3)

Software Context A non-exhaustive description of the software configuration of the device that is performing a test
run.

Hardware Context A non-exhaustive description of the hardware configuration of the device that is performing a test
run. One important aspect is that currently hardware context is limited to one device only.

5

Linaro Dashboard Bundle Documentation, Release 1.7

6 Chapter 2. Glossary

CHAPTER

THREE

DASHBOARD BUNDLE SCHEMA

Dashboard bundle is a JSON document. As such it can be transmitted,

manipulated and processed with various different tools, languages and toolkits.

This specification intends to formalize the schema of supported documents as well as give additional insight into how
each field was designed to be used.

Throughout this document we will be using path references. That is, starting with the root object a sequence of
traversals, either object access (dictionary access in Python) or array access (list access in Python).

For array indices we will also use wild-card character * to indicate that all indices of the specified array are considered
equal.

3.1 Schema Description (1.3)

This document specifies the semantics of the 1.3 format.

3.1.1 Root object

The root object contains only two properties.

1. The format specified (format)

2. The array of test runs (test_runs).

The format needs to be a fixed value, namely the string "Dashboard Bundle Format 1.3". The test array
must have zero or more test run objects.

3.1.2 Test run objects

This is the most fundamental piece of actual data. Test runs represent an act of running a test (a collection of logical
test cases wrapped in a testing program) in a specific hardware context (currently constrained to a single machine) and
software context (currently constrained to installed software packages and abstract source references, described later)

Each test run has multiple mandatory and a few more optional properties. The mandatory properties are as follows:

1. The unique identifier assigned by the log analyzer (analyzer_assigned_uuid). Historically
each test run was created by analyzing the text output of a test program. The analyzer was the
only entity that we could control so it had to assign identifiers to test run instances. This iden-
tifier must be an UUID (that is, a string of 36 hexadecimal characters in the following format

7

Linaro Dashboard Bundle Documentation, Release 1.7

[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}. While upper and
lower case letters are not distinguished lowercase values are preferred.

2. Analyzer time-stamp (analyzer_assigned_date). This one of the few time stamps stored in a bundle.
This one is authoritatively assigned by the log analyzer. It does not indicate when a test was actually started but
rather when it was read and processed by the analyzer.

3. Time check performed by the log analyzer (time_check_performed). Since LAVA uses analyzers that
often run on the target device the value of the analyzer_assigned_date field was inherently unreliable.
To differentiate between a device that has somewhat trusted time and date settings (such as a device running
NTP service and having battery-powered real-time clock) from others we have introduced this boolean field.
The interpretation remains open to the user but whenever one creates test run object it should be set to false
unless the time can be trusted enough.

4. A free-form collection of attributes (attributes). This is a simple object with arbitrary properties. It can
be used as a simple extension point to append data that test runs cannot natively represent. To make this field
database friendly it has been limited to a string-only values. That is, each property can be named freely but must
point to a string value. In particular nested objects are not allowed.

5. An array of tags (tags). Each tag is a string in the following format: [a-z0-9-]+. There should be no
duplicates in the list although this is not enforced at format level yet.

6. Test identifier (test_id). Test identifier is an unique string that designates a test. Tests are simply a
logical container of test cases. The identifier must be a string matching the following regular expression
[a-z0-9.-]+. It is recommended that reverse domain name scheme is used for test ID. Following this
pattern would allow one to construct logical containers rooted at the top-level-domain owned by test owner.

6. An array of test results (test_results). Test results are described in a dedicated section below.

7. An array of attachments (attachments). Attachments are also described in a dedicated section below. It
is worth mentioning that the format for storing attachments has changed and was different in 1.1 format and
earlier. When processing unknown documents make sure to validate and evolve the format to the one that is
recognized by your program.

8. The hardware context in which the test was invoked (hardware_context).

9. The software context in which the test was invoked (software_context).

3.1.3 Test results objects

Test result is an object with three essential and many less used properties. The most important properties are:

1. test_case_id that identifies the test case (the test case identifier is a string, unique to the test it belongs to,
the test is recored, as test_id in a test run object)

2. result that encodes the outcome of the test. Currently only four values are allowed here, they are ‘pass’,
‘fail’, ‘skip’ and ‘unknown’. The first three are rather obvious, the last one has a special purpose. It is the
recommended value of a benchmark. Essentially since benchmarks are not pass-fail tests (the measurements
can be dissatisfying from a certain point of view but this is relative) and the result code is mandatory we have
decided to use it by default for all benchmarks.

3. measurement (optional) that encodes the benchmark result. This is a single decimal number. The system
handles this without precision loss so don’t be afraid to use it for things that would be impractical with simple
floating point numbers.

Since there is only one measurement allowed per test case our recommendation is to store each measurement (each
number that comes out of some test code) as a separate result with an unique test case identifier. The only excep-
tion, perhaps, would be a case where the test case is really the same and subsequent results sample the same value
periodically. We have not explored this area yet and it is likely that for profiling we’ll introduce a dedicated schema.

8 Chapter 3. Dashboard Bundle Schema

Linaro Dashboard Bundle Documentation, Release 1.7

3.1.4 Attachments objects

Attachments are simple objects that store the pathname (or just name), mime_type and either the raw content
(here stored as base64-encoded string) or a reference to a copy in a public_url field.

We don’t recommend storing very large attachments directly in the bundle. While it will work the performance of
handling such bundles will pale in comparison to the same bundle with attachments stored externally.

3.1.5 Software context objects

Software context is a object that describes the “software” part of the environment in which a test was running. Cur-
rently this is limited to three pieces of information:

1. A list of packages that was installed (packages). Each package is a simple object with name and version.
So far we used this system for Debian packages but it should map fine for RedHat and Android as well.

2. A list of software sources. A source is a loose association (it does not tell you exactly how the source was
used/present on the device) between the test and some precise source code. The source code is identified by a
particular commit (revision, check-in, change set, recored as branch_revision) in a particular version con-
trol system (branch_vcs) that is found at a particular, version control system specific, url (branch_url).
Since many of our users use Launchpad we also decided to store the name of the project. Thus we associated
the project_name property with a launchpad project name. There is one extra attribute, that is optional,
which records the date and time of the commit (commit_timestamp). While we realise that time stamps do
not form an ancestor-descendant chain (definitely not in distributed version control systems) they non the less
provide useful context.

3. A name of the system image. There is very little rationale behind this field apart from end-user usefulness (what
was the user running?). We recommend to store the output of lsb_release --description --short
if appropriate. Note that this does not allow one to uniquely identify images (at the very least this was not the
indented usage of this field)

3.1.6 Hardware context objects

Hardware context is an object that holds an array of devices in its sole property (devices). Each device object has
a type (device_type), a human-readable description (device_description) and an arbitrary set of attributes
(contained in attributes). Each attribute may be a string or an integer.

There are some device types currently used by LAVA. The convention is “device, dot, device type”, for example we
currently have device.usb, device.cpu and device.memory.

In practice devices are modeled ad-hoc, as the need arises. The attributes can store enough information to be looked
up later that we did not try to standardize how all actual devices should be described (there is no strict schema for, say,
PCI cards). We hope to see a set of mini-standards developing around this concept where a device of a particular class
has a standardized set of attributes that everyone agrees on.

3.2 Raw Schema (1.3)

For those versed in JSON-Schema we’d like to recommend reading the full schema directly. Note that this is the latest
format schema, the full catalogue is included in the source distribution.

1 {
2 "description": "DashboadBundle object",
3 "type": "object",
4 "additionalProperties": false,

3.2. Raw Schema (1.3) 9

Linaro Dashboard Bundle Documentation, Release 1.7

5 "properties": {
6 "format": {
7 "description": "Document format identifier.",
8 "type": "string",
9 "enum": [

10 "Dashboard Bundle Format 1.3"
11]
12 },
13 "test_runs": {
14 "description": "Array of TestRun objects",
15 "type": "array",
16 "optional": true,
17 "items": {
18 "description": "TestRun object",
19 "type": "object",
20 "additionalProperties": false,
21 "properties": {
22 "analyzer_assigned_uuid": {
23 "description": "UUID that was assigned by the log analyzer during processing",
24 "type": "string"
25 },
26 "analyzer_assigned_date": {
27 "description": "Time stamp in ISO 8601 format that was assigned by the log analyzer during processing. The exact format is YYYY-MM-DDThh:mm:ssZ",
28 "type": "string",
29 "format": "date-time"
30 },
31 "time_check_performed": {
32 "description": "Indicator on whether the log analyzer had accurate time information",
33 "type": "boolean"
34 },
35 "attributes": {
36 "description": "Container for additional attributes defined by the test and their values during this particular run",
37 "type": "object",
38 "optional": true,
39 "additionalProperties": {
40 "description": "Arbitrary properties that are defined by the test",
41 "type": "string"
42 }
43 },
44 "tags": {
45 "description": "An optional array of tags that are associated with this test run. Note that those are not version-control tags but arbitrary classifiers for test results",
46 "type": "array",
47 "optional": true,
48 "items": {
49 "description": "Tag name",
50 "type": "string"
51 }
52 },
53 "test_id": {
54 "description": "Test identifier. Must be a well-defined (in scope of the dashboard) name of the test",
55 "type": "string"
56 },
57 "test_results": {
58 "description": "Array of TestResult objects",
59 "type": "array",
60 "items": {
61 "description": "TestResult object",
62 "type": "object",

10 Chapter 3. Dashboard Bundle Schema

Linaro Dashboard Bundle Documentation, Release 1.7

63 "additionalProperties": false,
64 "properties": {
65 "test_case_id": {
66 "description": "Identifier of the TestCase this test result came from",
67 "type": "string",
68 "optional": true
69 },
70 "result": {
71 "description": "Status code of this test result",
72 "type": "string",
73 "enum": ["pass", "fail", "skip", "unknown"]
74 },
75 "message": {
76 "description": "Message scrubbed from the log file",
77 "type": "string",
78 "optional": true
79 },
80 "measurement": {
81 "description": "Numerical measurement associated with the test result",
82 "type": "number",
83 "optional": true,
84 "requires": "test_case_id"
85 },
86 "units": {
87 "description": "Units for measurement",
88 "type": "string",
89 "optional": true,
90 "requires": "measurement"
91 },
92 "timestamp": {
93 "description": "Date and time when the test was performed",
94 "type": "string",
95 "optional": true,
96 "format": "date-time"
97 },
98 "duration": {
99 "description": "Duration of the test case. Duration is stored in the following format ’[DAYS]d [SECONDS]s [MICROSECONDS]us’",

100 "type": "string",
101 "optional": true
102 },
103 "log_filename": {
104 "description": "Filename of the log file which this test result was scrubbed from",
105 "type": "string",
106 "optional": true
107 },
108 "log_lineno": {
109 "description": "Precise location in the log file (line number)",
110 "type": "integer",
111 "optional": true,
112 "requires": "log_filename"
113 },
114 "attributes": {
115 "description": "Container for additional attributes defined by test result",
116 "type": "object",
117 "optional": true,
118 "additionalProperties": {
119 "description": "Arbitrary properties that are defined by the particular test result",
120 "type": "string"

3.2. Raw Schema (1.3) 11

Linaro Dashboard Bundle Documentation, Release 1.7

121 }
122 }
123 }
124 }
125 },
126 "attachments": {
127 "description": "Array of attachments",
128 "optional": true,
129 "type": "array",
130 "items": {
131 "type": "object",
132 "additionalProperties": false,
133 "properties": {
134 "pathname": {
135 "description": "Attachment pathname",
136 "type": "string"
137 },
138 "mime_type": {
139 "description": "Attachment MIME type",
140 "type": "string"
141 },
142 "content": {
143 "description": "Attachment content encoded as base64 string with standard encoding",
144 "type": "string",
145 "optional": true
146 },
147 "public_url": {
148 "description": "Public URL of this attachment",
149 "type": "string",
150 "optional": true
151 }
152 }
153 }
154 },
155 "hardware_context": {
156 "description": "Description of the hardware context in which this test was running",
157 "type": "object",
158 "optional": true,
159 "additionalProperties": false,
160 "properties": {
161 "devices": {
162 "description": "Array of HardwareDevice objects",
163 "type": "array",
164 "items": {
165 "description": "HardwareDevice object",
166 "type": "object",
167 "properties": {
168 "device_type": {
169 "type": "string",
170 "description": "Device type"
171 },
172 "description": {
173 "type": "string",
174 "description": "Human readable description of the device"
175 },
176 "attributes": {
177 "description": "Container for additional attributes defined by the device",
178 "type": "object",

12 Chapter 3. Dashboard Bundle Schema

Linaro Dashboard Bundle Documentation, Release 1.7

179 "optional": true,
180 "additionalProperties": {
181 "description": "Arbitrary properties that are defined by the particular hardware device",
182 "type": ["number", "string"]
183 }
184 }
185 },
186 "additionalProperties": false
187 }
188 }
189 }
190 },
191 "software_context": {
192 "description": "Description of the software context in which this test was running",
193 "type": "object",
194 "additionalProperties": false,
195 "optional": true,
196 "properties": {
197 "image": {
198 "description": "SoftwareImage object",
199 "type": "object",
200 "optional": true,
201 "additionalProperties": false,
202 "properties": {
203 "name": {
204 "description": "Name of the operating system image",
205 "type": "string"
206 }
207 }
208 },
209 "sources": {
210 "type": "array",
211 "optional": true,
212 "items": {
213 "type": "object",
214 "additionalProperties": false,
215 "properties": {
216 "project_name": {
217 "type": "string"
218 },
219 "branch_vcs": {
220 "type": "string",
221 "enum": ["bzr", "git", "svn"]
222 },
223 "branch_url": {
224 "type": "string"
225 },
226 "branch_revision": {
227 "type": ["string", "integer"]
228 },
229 "commit_timestamp": {
230 "type": "string",
231 "format": "date-time",
232 "optional": true
233 }
234 }
235 }
236 },

3.2. Raw Schema (1.3) 13

Linaro Dashboard Bundle Documentation, Release 1.7

237 "packages": {
238 "description": "Array of SoftwarePackage objects",
239 "type": "array",
240 "optional": true,
241 "items": {
242 "description": "SoftwarePackage object",
243 "type": "object",
244 "additionalProperties": false,
245 "properties": {
246 "name": {
247 "description": "Package name",
248 "type": "string"
249 },
250 "version": {
251 "description": "Package version",
252 "type": "string"
253 }
254 }
255 }
256 }
257 }
258 }
259 }
260 }
261 }
262 }
263 }

3.3 Example Bundles

This document contains a few example bundles. More bundles are included in the source distribution.

3.3.1 Smallest bundle

Actually all that is needed is the format. The rest is entirely optional so this bundle is just fine.

1 {
2 "format": "Dashboard Bundle Format 1.0"
3 }

3.3.2 Everything (1.3)

This bundle has everything possible at once. It is also using the most recent format (currently 1.3)

1 {
2 "format": "Dashboard Bundle Format 1.3",
3 "test_runs": [
4 {
5 "analyzer_assigned_date": "2010-11-14T13:42:31Z",
6 "analyzer_assigned_uuid": "01234567-0123-0123-0123-01234567890A",
7 "test_id": "example test id",
8 "time_check_performed": false,
9 "attributes": {

14 Chapter 3. Dashboard Bundle Schema

Linaro Dashboard Bundle Documentation, Release 1.7

10 "attr1": "value1",
11 "attr2": "value2"
12 },
13 "tags": [
14 "example-content",
15 "example-content-format-1.3"
16],
17 "attachments": [
18 {
19 "pathname": "attachment1.txt",
20 "mime_type": "text/plain",
21 "content": "bGluZTEKbGluZTIKbGluZTMK"
22 },
23 {
24 "pathname": "attachment2.txt",
25 "mime_type": "text/plain",
26 "content": "b3RoZXIgbGluZTEK",
27 "public_url": "http://www.example.org/attachment2.txt"
28 }
29],
30 "test_results": [
31 {
32 "test_case_id": "example test case id",
33 "result": "pass",
34 "message": "example message",
35 "measurement": 3.5,
36 "units": "s",
37 "timestamp": "2010-11-14T13:49:56Z",
38 "duration": "0d 1s 134us",
39 "log_filename": "attachment1.txt",
40 "log_lineno": 2,
41 "attributes": {
42 "test result attribute": "value"
43 }
44 }
45],
46 "hardware_context": {
47 "devices": [
48 {
49 "device_type": "example device type",
50 "description": "example device",
51 "attributes": {
52 "hw attr1": "value1",
53 "hw attr2": "value2"
54 }
55 }
56]
57 },
58 "software_context": {
59 "packages": [
60 {
61 "name": "pkg1",
62 "version": "version1"
63 },
64 {
65 "name": "pkg2",
66 "version": "version2"
67 }

3.3. Example Bundles 15

Linaro Dashboard Bundle Documentation, Release 1.7

68],
69 "image": {
70 "name": "example os image"
71 },
72 "sources": [
73 {
74 "branch_revision": 93556,
75 "branch_url": "lp:gcc-linaro/4.4",
76 "branch_vcs": "bzr",
77 "commit_timestamp": "2010-09-07T14:49:43Z",
78 "project_name": "linaro-gcc"
79 }
80]
81 }
82 }
83]
84 }

16 Chapter 3. Dashboard Bundle Schema

CHAPTER

FOUR

USAGE

4.1 Loading a document

There are two functions that perform this task. For streams there is DocumentIO.load(), for simple strings there
is DocumentIO.loads().

Each function does three things:

• read the document text

• deserialize it properly (using propert configuration for parsing floating point numbers).

• check the document by inspecting the format and validating it against a built-in schema

If you use this API there is no need to double-check the contents of the document you’ve got. It’s going to match the
description of the schema.

Example of reading something from a file:

with open("bundle.json", "rt") as stream:
format, bundle = DocumentIO.load(stream)
print "Loaded document type: %s" % format

The error path is a little more complex. Loading can fail at the following levels:

1. You can get an IOError while reading from the stream

2. You can get a ValueError or JsonDecodeError depending on which version of simplejson you have while pro-
cessing the text

3. You can get a DocumentFormatError when the format string is missing or has an unknown value

4. You can get a ValidationError when the document does not match the format

4.2 Saving a document

There is just one function for saving a document DocumentIO.dump(). It will always validate the document before
saving it so there is little chance of producing invalid files this way.

Currently this function uses a hardcoded human-readable profile. If you care about representation efficiency use a
compressed storage such as gzip.GzipFile.

Example of writing a bundle to a file:

17

http://docs.python.org/library/gzip.html#gzip.GzipFile

Linaro Dashboard Bundle Documentation, Release 1.7

with open("bundle.json", "wt") as stream:
bundle = {"format": "Dashboard Bundle Format 1.0"}
DocumentIO.dump(stream, bundle)

4.3 Checking document for errors

To validate document for correctness you can use DocumentIO.check().

Note: Most of the time you don’t need to validate a document explicitly. It is automatically validated when loading
and saving.

4.4 Converting older documents to current format

To convert a document to the most recent format you can use DocumentEvolution.evolve_document(). It
is safe to call this method on any valid document. If you just need to check if the document is using the most recent
format call DocumentEvolution.is_latest().

18 Chapter 4. Usage

CHAPTER

FIVE

CODE DOCUMENTATION

5.1 Document Manipulation APIs

class linaro_dashboard_bundle.io.DocumentIO
Document IO encapsulates various (current and past) file formats and provides a single entry point for analyzing
a document, determining its format and validating the contents.

classmethod check(doc)
Check document format and validate the contents against a schema.

Discussion The document is validated against a set of known versions and their schemas.

Return value String identifying document format

Exceptions

linaro_json.ValidationError When the document does not match the appropriate schema.

linaro_dashboard_bundle.errors.DocumentFormatError When the document format is
not in the known set of formats.

classmethod dump(stream, doc, human_readable=True, sort_keys=False)
Check and save a JSON document to the specified stream

Discussion The document is validated against a set of known formats and schemas and saved to
the specified stream.

If human_readable is True the serialized stream is meant to be read by humans, it will have
newlines, proper indentation and spaces after commas and colons. This option is enabled by
default.

If sort_keys is True then resulting JSON object will have sorted keys in all objects. This
is useful for predictable format but is not recommended if you want to load-modify-save
an existing document without altering it’s general structure. This option is not enabled by
default.

Return value None

Exceptions

Other exceptions This method can also raise exceptions raised by DocumentIO.check()

classmethod dumps(doc, human_readable=True, sort_keys=False)
Check and save a JSON document as string

Discussion The document is validated against a set of known formats and schemas and saved to
a string.

19

Linaro Dashboard Bundle Documentation, Release 1.7

If human_readable is True the serialized value is meant to be read by humans, it will have
newlines, proper indentation and spaces after commas and colons. This option is enabled by
default.

If sort_keys is True then resulting JSON object will have sorted keys in all objects. This
is useful for predictable format but is not recommended if you want to load-modify-save
an existing document without altering it’s general structure. This option is not enabled by
default.

Return value JSON document as string

Exceptions

Other exceptions This method can also raise exceptions raised by DocumentIO.check()

classmethod load(stream, retain_order=True)
Load and check a JSON document from the specified stream

Discussion The document is read from the stream and parsed as JSON text. It is then validated
against a set of known formats and their schemas.

Return value Tuple (format, document) where format is the string identifying document format
and document is a JSON document loaded from the passed text. If retain_order is True then
the resulting objects are composed of ordered dictionaries. This mode is slightly slower and
consumes more memory.

Exceptions

ValueError When the text does not represent a correct JSON document.

Other exceptions This method can also raise exceptions raised by DocumentIO.check()

classmethod loads(text, retain_order=True)
Same as load() but reads data from a string

exception linaro_dashboard_bundle.errors.DocumentFormatError(format)
Exception raised when document format is not in the set of known values.

You can access the :format: property to inspect the format that was found in the document

class linaro_dashboard_bundle.evolution.DocumentEvolution
Document Evolution encapsulates format changes between subsequent document format versions. This is useful
when your code is designed to handle single, for example the most recent, format of the document but would
like to interact with any previous format transparently.

classmethod evolve_document(doc, one_step=False)
Evolve document to the latest known version.

Runs an in-place evolution of the document doc converting it to more recent versions. The conversion
process is lossless.

Parameters

• doc (JSON document, usually python dictionary) – document (changed in place)

• one_step – if true then just one step of the evolution path is taken before exiting.

Return type None

classmethod is_latest(doc)
Check if the document is at the latest known version

20 Chapter 5. Code Documentation

CHAPTER

SIX

VERSION HISTORY

6.1 Version 1.7

• Document most of the Raw Schema (1.3) schema and Schema Description (1.3) (recommended)

• Provide some example documents Example Bundles

6.2 Version 1.6

• Add support for 1.3 format. This format makes it possible to tag test runs with arbitrary tag names. Tagging
allows one to organize results more flexibly.

6.3 Version 1.5

• Add support for 1.2 format. This format makes attachments more flexible by allowing one to omit the contents
of the attachment and store a public URL instead

• Allow ‘svn’ version control systems in source references (schema.properties.test_runs.items.properties.software_context.properties.sources.items.properties.branch_vcs.enum)

• Move everything away from __init__.py so that we can safely import it in setup.py

6.4 Version 1.4

• Add support for DocumentIO.loads() and load() retain_order keyword argument. It defaults to True (preserving
old behavior) and allows for either safe load-modify-save cycles that minimise differences or more efficient
processing as plain python dictionaries.

• Add support for DocumentIO.dumps() and dump() human_readable keyword argument. It defaults to True (pre-
serving old behavior) and allows to control the desired format of the output document. For machine processing
or storage the compact option will save a few bytes.

• Add support for DocumentIO.dumps() and dump() sort_keys keyword argument. It defaults to False (preserving
old behavior) and allows to create predictable documents from plain python dictionaries that would otherwise
result in random ordering depending on python implementation details.

21

Linaro Dashboard Bundle Documentation, Release 1.7

6.5 Version 1.3

• Add mime_type support to attachments in 1.1 format. Seal the 1.1 format.

• Add support for document evolution for between 1.0.1 and 1.1 formats.

• More unit tests (evolution from 1.0.1 to 1.1, lossless IO fro 1.1 format)

6.6 Version 1.2

• New document format with support for binary attachments and precise source information (extended software
context)

• Refresh installation instructions to point to the new PPA, provide links to lp.net project page and pypi project
page.

6.7 Version 1.1.1

• Sign source package

• Fix installation problem with pip due to versiontools not being available when parsing initial setup.py

6.8 Version 1.1

• Project renamed to linaro-dashboard-bundle

• Started using pypi for hosting releases and documentation

• Add initial parts of class-based JSON schema

6.9 Version 1.0

• First public release

22 Chapter 6. Version History

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

23

Linaro Dashboard Bundle Documentation, Release 1.7

24 Chapter 7. Indices and tables

PYTHON MODULE INDEX

l
linaro_dashboard_bundle.errors, 20
linaro_dashboard_bundle.evolution, 20
linaro_dashboard_bundle.io, 19

25

	Installation
	Prerequisites
	Installation Options

	Glossary
	Dashboard Bundle Schema
	Schema Description (1.3)
	Raw Schema (1.3)
	Example Bundles

	Usage
	Loading a document
	Saving a document
	Checking document for errors
	Converting older documents to current format

	Code Documentation
	Document Manipulation APIs

	Version History
	Version 1.7
	Version 1.6
	Version 1.5
	Version 1.4
	Version 1.3
	Version 1.2
	Version 1.1.1
	Version 1.1
	Version 1.0

	Indices and tables
	Python Module Index

